
J Math Chem (2015) 53:402–429
DOI 10.1007/s10910-014-0431-0

ORIGINAL PAPER

A new explicit four-step method with vanished
phase-lag and its first and second derivatives

T. E. Simos

Received: 29 August 2014 / Accepted: 8 October 2014 / Published online: 21 October 2014
© Springer International Publishing Switzerland 2014

Abstract A study on the vanishing of the phase-lag and its first and second derivatives
for a family of explicit four-step methods first introduced by Anastassi and Simos (J
Comput Appl Math 236:3880–3889, 2012) is presented in this paper. The methods
investigated in this paper belongs to the category of methods with frequency dependent
coefficients. For these methods we will investigate the procedure of vanishing of the
phase-lag and its first and second derivatives. For the new proposed methods we will
define the local truncation error and we will study an local truncation error analysis.
Finally we will compare the results of the error analysis with other known methods of
the literature. We will study also the stability analysis of the new proposed method. We
will apply the new produced methods on the resonance problem of the Schrödinger
equation in order to investigate their efficiency.
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1 Introduction

The approximate solution of special second-order initial- or boundary-value problems
of the form

p′′(x) = f (x, p), p(x0) = p0 and p′(x0) = p′
0 (1)

is investigated in this paper. The main characteristics of the mathematical models of
these type of problems are:

– the mathematical models of the above mentioned problems are systems of second
order ordinary differential equations in which the first derivative p′ does not appear
explicitly

– the solutions of the the mathematical models of the above mentioned papers are
of periodical and/or oscillatory behavior.

For numerical schemes for these problems see [1–17,19,21–34,37–59,61–130] and
references therein.

The structure of the present paper is the following.

– Presentation of the new explicit linear four-step method
– Investigation of the new presented method (definition of the coefficients of the

method which are based on the requirement of elimination of the phase-lag and
its first and second derivatives)

– Analysis of the method
1. Computation of the local truncation error
2. Comparative local truncation error analysis
3. Stability analysis

– Implementation of the method
– Application of the method to the Schrödinger equation and related problems

The paper is constructed as follows:
Some bibliography on the subject of this paper is presented in Sect. 2. The phase-

lag analysis of the symmetric multistep methods is developed in Sect. 3. In Sect. 4
we present the construction of the new linear explicit symmetric four-step method
with eliminated phase-lag and its first and second derivatives. The comparative local
truncation error analysis is investigated in Sect. 5. In Sect. 6 the stability analysis (with
frequency of scalar test equation different than the frequency of scalar test equation
for phase-lag analysis) is presented. Finally, the numerical experiments obtained by
the application of the new developed method to the resonance problem of the radial
time independent Schrödinger equation is presented in Sect. 7. Some comments on the
comparative application of the new obtained method with other well know methods
in the literature are also presented in the same section.
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Fig. 1 The main categories of the methods developed the last decades

2 Literature related on the research subject of the paper

Extended research the last decades has been done on the numerical solution of the one-
dimensional time independent Schrödinger equation and on the approximate solution
of the related problems.

The main directions of this research are presented in Fig. 1. The aim and scope of
this research was the construction of efficient, fast and reliable algorithms (see for
example [1–17,19,21–34,37–59,61–130]).

Below we give some bibliography on this research:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta–Nyström type have been obtained in [5,28,32,33,47,57–
59,86,119].

– In [4,6,24,85,87,121] exponentially and trigonometrically fitted Runge–Kutta and
Runge–Kutta–Nyström methods are constructed.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [1–3,10,11,13,14,30,31,48,51–56,68,69,71,75,82,88,90,102,106,
107,109,111,112,128,129].

– Symplectic integrators are investigated in [23,25–27,38–46,70,73,74,91,96–100,
103,104,108,110,117,118,120,123].

– Exponentially and trigonometrically multistep methods have been produced in
[7,12,21,29,50,61–64,66,84,89,93–95,101,105,115,124,127,130].

– Nonlinear methods have been studied in [112] and [113]
– Review papers have been presented in [8,22,83,125,126]
– Special issues and Symposia in International Conferences have been developed

on this subject (see [30,90]).
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Fig. 2 Flowchart for the phase-lag analysis of 2 m-symmetric multistep methods. v = φh

3 Analysis of the phase-lag for symmetric multistep methods

The phase-lag analysis of the symmetric multistep methods is based on the flowchart
of the Fig. 2.
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Based on this flowchart we have the following algorithm for the phase-lag analysis
of the symmetric 2 m-step methods

– Let us consider the 2 m—multistep methods of the form:

m∑

i=−m

ai pn+i = h2
m∑

i=−m

bi f (xn+i , pn+i ) (2)

for the approximate solution of the periodic initial or boundary value problem of
the form (1). In the above methods, m is the number of steps over the equally
spaced intervals {xi }m

i=−m ∈ [a, b], h = |xi+1 − xi |, i = −m + 1(1)m − 1, where
h is called stepsize of integration.

Remark 1 If the method is symmetric then ai = a−i and bi = b−i , i = −m(1)m.

Remark 2 The operator

L(x) =
k∑

i=0

ai u(x + ih) − h2
k∑

i=0

bi u′′(x + ih) (3)

where u ∈ C2, is associated with thr above mentioned 2 m—multistep method (2).

Definition 1 [9] We call that the multistep method (2) is of algebraic order q if its
associated linear operator L vanishes for any linear combination of the linearly inde-
pendent functions 1, x, x2, . . . , xq+1.

– We apply the symmetric 2 m-step method (i = −m(1)m), to the scalar test equation:

p′′ = −φ2 p (4)

– The following difference equation is obtained as a result of the above mentioned
application:

Am(v) pn+m + · · · + A1(v) pn+1 + A0(v) pn

+ A1(v) pn−1 + · · · + Am(v) pn−m = 0 (5)

where v = φ h, h is the stepsize of the integration and A j (v) j = 0(1)m are
polynomials of v.

– The obtained difference Eq. (5) is associated with the characteristic equation:

Am(v) λm + · · · + A1(v) λ + A0(v)

+ A1(v) λ−1 + · · · + Am(v) λ−m = 0 (6)

We have the definitions:
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Definition 2 [34] A symmetric 2 m-step method with characteristic equation given
by (6) is said to have an interval of periodicity (0, v2

0) if, for all v ∈ (0, v2
0), the roots

λi , i = 1(1)2 m of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi | ≤ 1, i = 3(1)2 m (7)

where θ(v) is a real function of v.

Definition 3 [82,116] For any method corresponding to the characteristic Eq. (6) the
phase-lag is defined as the leading term in the expansion of

t = v − θ(v) (8)

Then if the quantity t = O(vk+1) as v → ∞, the order of phase-lag is k.

Definition 4 [67] Phase-fitted is called a method with vanished phase-lag.

Remark 3 The phase-fitted methods are problem dependent methods, when the meth-
ods with minimal phase-lag are problem independent.

Theorem 1 [82] The symmetric 2 m-step method with characteristic equation given
by (6) has phase-lag order k and phase-lag constant c given by

−cvk+2 + O(vk+4)

= 2 Am(v) cos(m v) + · · · + 2 A j (v) cos( j v) + · · · + A0(v)

2 m2 Am(v) + · · · + 2 j2 A j (v) + · · · + 2 A1(v)
. (9)

Remark 4 For the direct computation of any symmetric 2 m-step method we use the
formula mentioned in above theorem.

In our case, the symmetric four-step method has phase-lag order k and phase-lag
constant c given by:

− cvk+2 + O(vk+4) = 2 A2(v) cos(2 v) + 2 A1(v) cos(v) + A0(v)

8 A2(v) + 2 A1(v)
. (10)

4 The family of linear explicit four-step methods with minimal phase-lag and its
first derivative

Let us consider, without loss of generality, from the family of methods (2) the case
am = a−m = 1. Then the family of methods (2) can be written as:

pn+m +
m−1∑

i=−m+1

ai pn+i + pn−m = h2
m−1∑

i=−m+1

bi f (xn+i , pn+i ), (11)

In the case of symmetric multistep methods we have ai = a−i and bi = b−i , i =
0(1)m − 1.
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Using the family of methods (11) with m = 2 we can obtain the explicit symmetric
four-step methods introduced in [9]:

pn+2 + a1 (pn+1 + pn−1) + a0 pn + pn−2

= h2
[

b1 ( fn+1 + fn−1) + b0 fn

]
(12)

where fi = p′′ (xi , pi ) , i = n − 1(1)n + 1.

4.1 The new method

We consider (12) with the following coefficient:

b1 = 311

240
. (13)

Applying the method (12) with the coefficient given by (13) to the scalar test Eq.
(4), we obtain the difference Eq. (5) with m = 2 and:

A2(v) = 1, A1(v) = a1 + 311

240
v2, A0(v) = a0 + v2 b0. (14)

Requiring the above method to have the phase-lag and its first and second derivatives
vanished, the following system of equations is obtained:

Phase-Lag(PL) =
2 cos (2 v) + 2

(
a1 + 311 v2

240

)
cos (v) + v2b0 + a0

8 + 2 a1 + 311
120 v2

= 0

First Derivative of PL =
−4 sin (2 v) + 311 v cos(v)

60 − 2
(

a1 + 311 v2

240

)
sin (v) + 2 v b0

8 + 2 a1 + 311
120 v2

− 311

60
v

2 cos (2 v) + 2
(

a1 + 311 v2

240

)
cos (v) + v2 b0 + a0

(
8 + 2 a1 + 311 v2

120

)2 = 0

Second Derivative of PL =
−8 cos (2 v) + 311 cos(v)

60 − 311 v sin(v)
30 − 2

(
a1 + 311 v2

240

)
cos (v) + 2 b0

8 + 2 a1 + 311 v2

120

− 311

30
v

−4 sin (2 v) + 311 v cos(v)
60 − 2

(
a1 + 311 v2

240

)
sin (v) + 2 v b0

(
8 + 2 a1 + 311 v2

120

)2

+ 96721

1800
v2

2 cos (2 v) + 2
(

a1 + 311 v2

240

)
cos (v) + v2b0 + a0

(
8 + 2 a1 + 311 v2

120

)3
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− 311

60

2 cos (2 v) + 2
(

a1 + 311 v2

240

)
cos (v) + v2b0 + a0

(
8 + 2 a1 + 311 v2

120

)2 = 0.

(15)

The coefficients of the new proposed method are obtained solving the above system
of equations:

a0 = T0

240 v cos (v) − 240 sin (v)

a1 = −311 cos (v) v3 − 960 cos (2 v) v − 933 sin (v) v2 + 480 sin (2 v)

240 v cos (v) − 240 sin (v)

b0 = 311 cos (2 v) v − 240 sin (3 v) + 311 sin (2 v) + 720 sin (v) − 933 v

240 v cos (v) − 240 sin (v)

(16)

where

T0 = −311 v3 cos (2 v) + 240 v2 sin (3 v) + 933 sin (2 v) v2

− 720 sin (v) v2 + 933 v3 + 720 v cos (3 v) + 720 v cos (v)

− 240 sin (3 v) − 720 sin (v)

The following Taylor series expansions should be used in the cases that the formulae
given by (16) are subject to heavy cancellations for some values of |v|:

a0 = −11

10
− 987 v2

200
+ 4271 v4

5250

+ 359519 v6

7560000
− 230600219 v8

11642400000
+ 414047801 v10

275184000000

− 187742245463 v12

2860537680000000
+ 3452695838071 v14

1945165622400000000

− 4421834645959223 v16

113831092222848000000000

+ 28209192944339923 v18

61468789800337920000000000
+ · · ·

a1 = − 9

20
+ 987 v2

400
− 4271 v4

10500

+ 2479 v6

236250
− 103429 v8

363825000

− 5617 v10

4299750000
− 35089391 v12

178783605000000

− 266161457 v14

30393212850000000
− 1560599262793 v16

3557221631964000000000
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Fig. 3 Behavior of the coefficients of the new proposed method given by (16) for several values of v = φ h

− 20847247620191 v18

960449840630280000000000
+ · · ·

b0 = 23

24
+ 987 v2

400
− 102881 v4

168000
+ 45031 v6

720000
− 17661053 v8

5174400000

+ 2228607707 v10

18162144000000
− 23030031811 v12

7628100480000000

+ 25545357151 v14

432259027200000000
− 333812746110859 v16

455324368891392000000000

+ 585466706807639 v18

40979193200225280000000000
+ · · · (17)

The behavior of the coefficients is given in the following Fig. 3.
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The local truncation error of the new obtained method (12) (mentioned as Expl
FourStep) with the coefficients given by (16)–(17) is given by:

LTEExplFourStep = 329 h6

4800

(
p(6)

n + 3 φ2 p(4)
n

+ 3 φ4 p(2)
n + φ6 pn

)
+ O

(
h8

)
(18)

5 Comparative local truncation error analysis

We will investigate the following methods:

5.1 Classical method (i.e. the method (12) with constant coefficients of the case I)

LTECL = 329 h6

4800
p(6)

n + O
(

h8
)

(19)

5.2 The method with vanished phase-lag produced in [8]

LTEMethAnasSim = 161 h6

2400

(
p(6)

n + φ2 p(4)
n

)
+ O

(
h8

)
(20)

5.3 The method with vanished phase-lag and its first derivative produced in [111]

LTEFourStep = 161 h6

2400

(
p(6)

n + 2 φ2 p(4)
n

+ φ4 p(2)
n

)
+ O

(
h8

)
(21)

5.4 The new obtained method with vanished phase-lag and its first and second
derivatives produced in Sect. 4

LTEExplFourStep = 329 h6

4800

(
p(6)

n + 3 φ2 p(4)
n

+ 3 φ4 p(2)
n + φ6 pn

)
+ O

(
h8

)
. (22)
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Fig. 4 Flowchart for the Local
Truncation Error Analysis of
2 m-symmetric multistep
methods

The comparative local truncation error analysis is based on the flowchart of the
Fig. 4.

Based on the above mentioned flowchart we have the following procedure

– We consider the problem: p′′(x) = f (x) p(x).
– We calculate the derivatives which are presented in the formulae of the Local

Truncation Errors:

p(2)
n = (V (x) − Vc + G) p(x)

p(3)
n =

(
d

dx
g (x)

)
p (x) + (g (x) + G)

d

dx
p (x)

p(4)
n =

(
d2

dx2 g (x)

)
p (x) + 2

(
d

dx
g (x)

)
d

dx
p (x)

+ (g (x) + G)2 p (x)

p(5)
n =

(
d3

dx3 g (x)

)
p (x) + 3

(
d2

dx2 g (x)

)
d

dx
p (x)

+ 4 (g (x) + G) p (x)
d

dx
g (x) + (g (x) + G)2 d

dx
p (x)
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p(6)
n =

(
d4

dx4 g (x)

)
p (x) + 4

(
d3

dx3 g (x)

)
d

dx
p (x)

+ 7 (g (x) + G) p (x)
d2

dx2 g (x) + 4

(
d

dx
g (x)

)2

p (x)

+ 6 (g (x) + G)

(
d

dx
p (x)

)
d

dx
g (x)

+ (g (x) + G)3 p (x)

p(7)
n =

(
d5

dx5
g (x)

)
p (x) + 5

(
d4

dx4 g (x)

)
d

dx
p (x)

+ 11 (g (x) + G) p (x)
d3

dx3 g (x) + 15

(
d

dx
g (x)

)
p (x)

× d2

dx2 g (x) + 13 (g (x) + G)

(
d

dx
p (x)

)
d2

dx2 g (x)

+ 10

(
d

dx
g (x)

)2 d

dx
p (x) + 9 (g (x) + G)2 p (x)

× d

dx
g (x) + (g (x) + G)3 d

dx
p (x)

p(8)
n =

(
d6

dx6 g (x)

)
p (x) + 6

(
d5

dx5
g (x)

)
d

dx
p (x)

+ 16 (g (x) + G) p (x)
d4

dx4 g (x) + 26

(
d

dx
g (x)

)
p (x)

× d3

dx3 g (x) + 24 (g (x) + G)

(
d

dx
p (x)

)
d3

dx3 g (x)

+ 15

(
d2

dx2 g (x)

)2

p (x) + 48

(
d

dx
g (x)

)

×
(

d

dx
p (x)

)
d2

dx2 g (x) + 22 (g (x) + G)2 p (x)

× d2

dx2 g (x) + 28 (g (x) + G) p (x)

(
d

dx
g (x)

)2

+ 12 (g (x) + G)2
(

d

dx
p (x)

)
d

dx
g (x)

+ (g (x) + G)4 p (x)

. . .

– The above procedure (substitution of the derivatives in the Local Truncation Errors
with the above mentioned formulae) leads to formulae of the Local Truncation
Error which are dependent from the energy E .

– Two cases in terms of the value of E are investigated for the Local Truncation
Error analysis :
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1. The Energy is close to the potential, i.e., G = Vc − E ≈ 0. In this case
we consider only the free terms of the polynomials in G (since all the other
terms are equal to 0—due to dependence on G). Therefore, the methods are of
comparable accuracy (for the specific value of G, i.e. for G = 0). The reason
is that in the case of G = 0 the the free terms of the polynomials in G are the
same for the classical method and for the methods with vanished the phase-lag
and its derivatives.

2. G � 0 or G 	 0. Then |G| is a large number.
– The asymptotic expansions of the Local Truncation Errors are finally determined.

The following asymptotic expansions of the Local Truncation Errors are obtained
based on the analysis presented above :

5.5 Classical method

LTECL = h6
(

329

4800
p (x) G3 + · · ·

)
+ O

(
h8

)
(23)

5.6 The method with vanished phase-lag produced in [9]

LTEMethAnasSim = h6
(

161

2400
g (x) p (x) G2 + · · · +

)
+ O

(
h8

)
(24)

5.7 The method with vanished phase-lag and its first derivative produced in [111]

LTEFourStep = h6
[(

161

2400
(g (x))2 p (x)

+ 161

1200

(
d

dx
g (x)

)
d

dx
y (x) + 161

480

×
(

d2

dx2 g (x)

)
p (x)

)
G + · · ·

]
+ O

(
h8

)
(25)

5.8 The new obtained method with vanished phase-lag and its first and second
derivatives produced in Sect. 4

LTEExplFourStep = h6
(

329

1200

(
d2

dx2 g (x)

)
p (x) G + · · ·

)
+ O

(
h8

)
(26)

From the above equations we have the following theorem:
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Theorem 2 For the Classical Four-Step Explicit Method, the error increases as the
third power of G. For the Four-Step Explicit Phase-Fitted Method developed in [9],
the error increases as the second power of G. For the Four-Step Explicit Method with
Vanished Phase-lag and its First Derivative developed in [111], the error increases as
the first power of G. Finally, for Four-Step Explicit Method with Vanished Phase-lag
and its First and Second Derivatives developed in Sect.4, the error increases as the
first power of G but with coefficient lower than the coefficient of the method developed
in [111]. So, for the numerical solution of the time independent one-dimensional
Schrödinger equation the New Obtained Method with Vanished Phase-Lag and its First
and Second Derivatives is the most efficient from theoretical point of view, especially
for large values of |G| = |Vc − E |.

6 Stability analysis

The stability (interval of periodicity) analysis is based on the flowchart of the Fig. 5.
Based on the above flowchart we have the following procedure in order to investigate

the stability of the new obtained method.

– We apply the new constructed method to the scalar test equation:

p′′ = −ω2 p. (27)

Fig. 5 Flowchart for the
stability (interval of periodicity)
analysis of 2 m-symmetric
multistep methods
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– The above application leads to the following difference equation:

A2 (s, v) (pn+2 + pn−2) + A1 (s, v) (pn+1 + pn−1)

+ A0 (s, v) pn = 0 (28)

where

A2 (s, v) = 1, A1 (s, v) = − T1

240 v cos (v) − 240 sin (v)

A0 (s, v) = T2

120 v cos (v) − 120 sin (v)
(29)

where

T1 = −311 cos (v) s2v + 311 cos (v) v3 + 1920 v (cos (v))2

+ 311 sin (v) s2 + 933 sin (v) v2 − 960 sin (v) cos (v) − 960 v

T2 = −480 (cos (v))2 sin (v) s2 + 480 (cos (v))2 sin (v) v2

+ 311 (cos (v))2 s2v − 311 (cos (v))2 v3

+ 1440 v (cos (v))3 + 311 sin (v) cos (v) s2

+ 933 sin (v) cos (v) v2 − 480 sin (v) (cos (v))2

+ 480 sin (v) s2 − 480 sin (v) v2 − 622 s2v + 622 v3

− 720 v cos (v) − 240 sin (v)

and s = ω h.

Remark 5 The frequency of the scalar test Eq. (27), ω, is not equal with the frequency
of the scalar test Eq. (4), φ, i.e., ω 
= φ.

The following definitions are produced based on the analysis which has been pre-
sented in Sect. 2:

Definition 5 (See [34]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 6 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e., s = v.

The s−w plane for the method obtained in this paper is presented in Fig. 6.

Remark 6 The method is stable on the shadowed area denoted on the s−v region. The
method is unstable on the white area on the s−v region.

1 Where S is a set of distinct points.
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Fig. 6 s−v plane of the the new obtained method with vanished phase-lag and its first and second derivatives

Remark 7 For the application of the methods on the mathematical models of some
problems, it is interesting to observe the surroundings of the first diagonal of the s−v

plane. This is happened when we have problems with mathematical models where
in order to apply the new obtained methods the frequency of the scalar test equation
for the phase-lag analysis must be equal to the frequency of the scalar test equation
for the stability analysis. We have many problems in sciences and engineering in this
category (for example the time independent Schrödinger equation).

Based on the above remark, the case where the frequency of the scalar test equation
for the phase-lag analysis is equal to the frequency of the scalar test equation for the
stability analysis is now investigated , i.e. we study the case where s = v (i.e. see the
surroundings of the first diagonal of the s−v plane). Based on this investigation we
obtain the results that the interval of periodicity of the new explicit four-step method
with minimal phase-lag and its first and second derivatives developed in Sect. 4 is
equal to: (0, 256).

The above research leads to the following theorem:

Theorem 3 The method constructed in Sect. 4:

– is of fourth algebraic order,
– has the phase-lag and its first and second derivatives equal to zero
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– has an interval of periodicity equals to: (0, 256) when the frequency of the scalar
test equation for the phase-lag analysis is equal to the frequency of the scalar test
equation for the stability analysis.

7 Numerical results

The effectiveness of the new obtained explicit linear four-step method is studied via
the numerical solution of the radial time-independent Schrödinger equation (see for
details [36]), which has a model of the form :

p′′(r) =
[

l(l + 1)/r2 + V (r) − k2
]

p(r). (30)

Remark 8 We note that the model (30) presents a boundary value problem which has
the following boundary conditions :

y(0) = 0 (31)

and another boundary condition, for large values of r , determined by physical prop-
erties of the specific problem.

For the above mathematical model (30) we have the following definitions of the
functions, quantities and parameters :

1. The function W (r) = l(l + 1)/r2 + V (r) is called the effective potential. This
satisfies W (x) → 0 as x → ∞,

2. The quantity k2 is a real number denoting the energy,
3. The quantity l is a given integer representing the angular momentum,
4. V is a given function which denotes the potential.

Since the obtained method is of the class of frequency - problem dependent method,
the value of parameter φ (see for example the notation after (4) and the formulae in
Sect. 4) must be defined in order the new obtained method to be applied to any problem.
The parameter φ for the case of the one-dimensional time independent Schrödinger
equation is given by (for l = 0):

φ =
√

|V (r) − k2| = √|V (r) − E | (32)

where V (r) is the potential and E is the energy.

7.1 Woods–Saxon potential

For our numerical experiments the well known Woods-Saxon potential is used. This
can be written as :

V (r) = u0

1 + q
− u0 q

a (1 + q)2 (33)
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Fig. 7 The Woods–Saxon potential

with q = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods–Saxon potential is shown in Fig. 7.
A methodology for the definition of the parameter φ into the new obtained method,

contains for some potentials, such as the Woods–Saxon potential, the definition of
some critical points (which are determined after study of the potentials—see for details
[22]).

For the purpose of our experiments, it is appropriate to choose φ as follows (see
for details [20] and [21]):

φ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(34)

For example, in the point of the integration region r = 6.5-h, the value of φ is equal
to:

√−37.5+E. So, w = φ h = √−37.5+E h. In the point of the integration region
r =6.5–3 h, the value of φ is equal to:

√−50+E, etc.

7.2 Radial Schrödinger equation: the resonance problem

We will investigate the approximate solution of the one-dimensional time independent
Schrödinger equation (30) with the Woods–Saxon potential (33) in order to study the
effectiveness of the new obtained method.

In order to proceed with the numerical solution of the above mentioned problem it is
necessary to define a finite interval of integration. Therefore, we have to approximate
the true (infinite) interval of integration. We determine for the specific integration the
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interval r ∈ [0, 15] for the purposes of our numerical tests. We consider Eq. (30) in a
rather large domain of energies, i.e., E ∈ [1, 1,000].

In the case of positive energies, E = k2, the potential decays faster than the term
l(l+1)

r2 and the Schrödinger equation effectively reduces to

p′′ (r) +
(

k2 − l(l + 1)

r2

)
p (r) = 0 (35)

for r greater than some value R.
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions respectively.
Thus, the solution of Eq. (30) (when r → ∞), has the asymptotic form

p (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(36)

where δl is the phase shift that may be calculated from the formula

tan δl = y (r2) S (r1) − y (r1) S (r2)

y (r1) C (r1) − y (r2) C (r2)
(37)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr) and
C (r) = −krnl (kr). Since the problem is treated as an initial-value problem, we need
p j , j = 0, (1)3 before starting a four-step method. From the initial condition, we
obtain p0. The values pi , i = 1(1)3 are obtained by using high order Runge–Kutta–
Nyström methods(see [16] and [15]). With these starting values, we evaluate at r2 of
the asymptotic region the phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1,000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

p(0) = 0, p(r) = cos
(√

Er
)

for large r. (38)

We compute the approximate positive eigenenergies of the Woods–Saxon resonance
problem using:

– The eighth order multi-step method developed by Quinlan and Tremaine [65],
which is indicated as Method QT8.

– The tenth order multi-step method developed by Quinlan and Tremaine [65], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [65],
which is indicated as Method QT12.
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Fig. 8 Accuracy (digits) for several values of C PU Time (in seconds) for the eigenvalue E2 = 341.495874.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
<0

– The fourth algebraic order method of Chawla and Rao with minimal phase-lag
[13], which is indicated as Method MCR4

– The exponentially-fitted method of Raptis and Allison [66], which is indicated as
Method MRA

– The hybrid sixth algebraic order method developed by Chawla and Rao with min-
imal phase-lag [14], which is indicated as Method MCR6

– The classical form of the fourth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL.2

– The Phase-Fitted Method (Case 1) developed in [9], which is indicated as Method
NMPF1

– The Phase-Fitted Method (Case 2) developed in [9], which is indicated as Method
NMPF2

– The Explicit Symmetric Four-Step Method with Vanished Phase-Lag and its First
Derivative (Case 2) developed in [111], which is indicated as Method NMC2

– The Explicit Symmetric Four-Step Method with Vanished Phase-Lag and its First
Derivative (Case 1) developed in [111], which is indicated as Method NMC1

– The New Obtained Method developed in Sect. 4, which is indicated as Method
NMFSPLD2D

2 With the term classical we mean the method of Sect. 4 with constant coefficients.
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Fig. 9 Accuracy (digits) for several values of C PU Time (in seconds) for the eigenvalue E3 = 989.701916.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
<0

The numerically calculated eigenenergies are compared with reference values.3 In
Figs. 8 and 9, we present the maximum absolute error Errmax = | log10 (Err) | where

Err = |Ecalculated − Eaccurate| (39)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

8 Conclusions

A family of explicit four-step methods was investigated in this paper. The aim and
scope of this research was the study of the vanishing of the phase-lag and its first
and second derivatives for the above mentioned family of the explicit symmetric four-
step methods. We presented for the specific obtained methods a comparative local
truncation error and stability analysis. We studied also the effect of the elimination of
the phase-lag and its first and second derivatives on the effectiveness of the produced
method for the numerical solution of the one-dimensional Schrödinger equation and
related problems.

3 The reference values are computed using the well known two-step method of Chawla and Rao [14] with
small step size for the integration.
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From the results presented above, we can make the following remarks:

1. The classical form of the four-step method developed in Sect. 4, which is indicated
as Method NMCL is more efficient than the fourth algebraic order method of
Chawla and Rao with minimal phase-lag [13], which is indicated as Method MCR4.
Both the above mentioned methods are more efficient than the exponentially-fitted
method of Raptis and Allison [66], which is indicated as Method MRA.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[65], which is indicated as Method QT10 is more efficient than the fourth algebraic
order method of Chawla and Rao with minimal phase-lag [13], which is indicated
as Method MCR4. The Method QT10 is also more efficient than the eighth order
multi-step method developed by Quinlan and Tremaine [65], which is indicated
as Method QT8. Finally, the Method QT10 is more efficient than the hybrid sixth
algebraic order method developed by Chawla and Rao with minimal phase-lag
[14], which is indicated as Method MCR6 for large CPU time and less efficient
than the Method MCR6 for small CPU time.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[65], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [65], which is indicated as
Method QT10

4. The Phase-Fitted Method (Case 1) developed in [9], which is indicated as Method
NMPF1 is more efficient than the classical form of the fourth algebraic order
four-step method developed in Sect. 4, which is indicated as Method NMCL,
the exponentially-fitted method of Raptis and Allison [66] and the Phase-Fitted
Method (Case 2) developed in [9], which is indicated as Method NMPF2

5. The Explicit Symmetric Four-Step Method with Vanished Phase-Lag and its First
Derivative (Case 2) developed in [111], which is indicated as Method NMC2 is
more efficient than the classical form of the fourth algebraic order four-step method
developed in Sect. 4, which is indicated as Method NMCL, the exponentially-fitted
method of Raptis and Allison [66] and the Phase-Fitted Method (Case 2) developed
in [9], which is indicated as Method NMPF2 and the Phase-Fitted Method (Case
1) developed in [9], which is indicated as Method NMPF1

6. The Explicit Symmetric Four-Step Method with Vanished Phase-Lag and its First
Derivative (Case 1) developed in [111], which is indicated as Method NMC21 is
more efficient than all the above mentioned methods.

7. The New Obtained Method developed in Sect. 4, which is indicated as Method
NMFSPLD2D is the most efficient one.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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